高一数学下册知识点拓展试题_高一数学下册知识点人教版

优秀作文素材 编辑: http://www.l-slimming.com

1、高一数学下册知识点拓展试题

【导语】进入到高一阶段,大家的学习压力都是呈直线上升的,因此平时的积累也显得尤为重要,高一频道为大家整理了《高一数学下册知识点拓展试题》希望大家能谨记呦!!

一、选择题(本大题共有12个小题,每小题5分,共60分,在每小题给出的四选项中只有一项是符合题目要求的。)

1.若关于x的不等式(1+k2)x≤k4+4的解集是m,则对任意实数k,总有()

a.2∈m,0∈mb.2m,0m

c.2∈m,0md.2m,0∈m

2.用列举法可以将集合a={a|a使方程ax2+2x+1有实数解}表示为()

a.a={1}b.a={0}c.a={0,1}d.a={0}或{1}

3.已知映射f:ab,其中a=b=r,对应法则f:y=-x2+2x,对于实数k∈b,在集合a中不存在原象,则k的范围是()

a.k>1b.k1c.k<>

4.已知函数y=f(x+1)的定义域是,则y=f(2x-1)的定义域是()

a.b.c.d.

5.已知函数f(x)=2xx>0x+1x≤0,f(a)+f(1)=0,则实数a的值等于()

a.-3b.-1c.1d.3

6.满足{1,2,3}m{1,2,3,4,5,6}的集合m的个数是()

a.8b.7c.6d.5

7.若函数f(x)和g(x)都是奇函数,且f(x)=af(x)+bg(x)+2在(0,+)上有值5,则f(x)在(-,0)上()

a.有最小值-5b.有值-5c.有最小值-1d.有值-1

8.已知f(x)为奇函数,g(x)为偶函数,且f(x)+g(x)=1x-1,则f(3)=()

a.1b.34c.38d.18

9.表示不超过x的整数,例如=2,=-5,已知f(x)=x-,g(x)=1x,则函数h(x)=f(x)-g(x)在x∈(0,4)的零点个数是()

a.1b.2c.3d.4

10.若lga,lgb是方程2x2-4x+1=0的两个实根,则(lgab)2的值等于()

a.2b.12c.4d.14

11.设函数f(x)=loga(x+b)(a>0,a1)的图像过点(2,1),其反函数的图像过点(2,8),则a+b等于()

a.6b.5c.4d.3

a.(-94,-2](0,12]b.(-114,-2](0,12]

c.(-94,-2](0,32]d.(-114,-2](0,32]

二、填空题(本大题共有4个小题,每小题5分,共20分)

13.函数y=2x+41-x的值域为_________

14.已知函数f(x)=ax+1x+2在区间(-2,+)上是增函数,则实数a的取值范围是_________

15.直线y=1与曲线x2-x+a有四个交点,则a的取值范围是_________

2、高一数学下册知识点人教版

【导语】现代人总结成功的几大要素:正确的思想、不懈的行动、伟大的性格、娴熟的技能、天赐的机会、宝贵的健康。可见,想取得成功,不仅要吃“苦中苦”,也要相关条件的配合支持,那些光知道吃苦的人,那些吃了不值得吃的苦的人,那些把吃苦当成解决一切问题法宝的人,恐怕只能继续在“苦中苦”的怪圈里徘徊。为大家整理了《高一数学下册知识点人教版》更多精彩内容,请持续关注本站!

【一】

1.多面体的结构特征

(1)棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。

正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形。

(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形。

正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心。

(3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形。

2.旋转体的结构特征

(1)圆柱可以由矩形绕一边所在直线旋转一周得到.

(2)圆锥可以由直角三角形绕一条直角边所在直线旋转一周得到.

(3)圆台可以由直角梯形绕直角腰所在直线旋转一周或等腰梯形绕上下底面中心所在直线旋转半周得到,也可由平行于底面的平面截圆锥得到。

(4)球可以由半圆面绕直径旋转一周或圆面绕直径旋转半周得到。

3.空间几何体的三视图

空间几何体的三视图是用平行投影得到,这种投影下,与投影面平行的平面图形留下的影子,与平面图形的形状和大小是全等和相等的,三视图包括正视图、侧视图、俯视图。

三视图的长度特征:“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法。

4.空间几何体的直观图

空间几何体的直观图常用斜二测画法来画,基本步骤是:

(1)画几何体的底面

在已知图形中取互相垂直的x轴、y轴,两轴相交于点o,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点o′,且使∠x′o′y′=45°或135°,已知图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴.已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半。

(2)画几何体的高

在已知图形中过o点作z轴垂直于xoy平面,在直观图中对应的z′轴,也垂直于x′o′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度不变。

【二】

空间几何体表面积体积公式:

1、圆柱体:表面积:2πrr+2πrh体积:πr2h(r为圆柱体上下底圆半径,h为圆柱体高)

2、圆锥体:表面积:πr2+πr[(h2+r2)的]体积:πr2h/3(r为圆锥体低圆半径,h为其高,

3、a-边长,s=6a2,v=a3

4、长方体a-长,b-宽,c-高s=2(ab+ac+bc)v=abc

5、棱柱s-h-高v=sh

6、棱锥s-h-高v=sh/3

7、s1和s2-上、下h-高v=h[s1+s2+(s1s2)^1/2]/3

8、s1-上底面积,s2-下底面积,s0-中h-高,v=h(s1+s2+4s0)/6

9、圆柱r-底半径,h-高,c—底面周长s底—底面积,s侧—,s表—表面积c=2πrs底=πr2,s侧=ch,s表=ch+2s底,v=s底h=πr2h

10、空心圆柱r-外圆半径,r-内圆半径h-高v=πh(r^2-r^2)

11、r-底半径h-高v=πr^2h/3

12、r-上底半径,r-下底半径,h-高v=πh(r2+rr+r2)/313、球r-半径d-直径v=4/3πr^3=πd^3/6

14、球缺h-球缺高,r-球半径,a-球缺底半径v=πh(3a2+h2)/6=πh2(3r-h)/3

15、球台r1和r2-球台上、下底半径h-高v=πh[3(r12+r22)+h2]/6

16、圆环体r-环体半径d-环体直径r-环体截面半径d-环体截面直径v=2π2rr2=π2dd2/4

17、桶状体d-桶腹直径d-桶底直径h-桶高v=πh(2d2+d2)/12,(母线是圆弧形,圆心是桶的中心)v=πh(2d2+dd+3d2/4)/15(母线是抛物线形)

练习题:

1.正四棱锥p—abcd的侧棱长和底面边长都等于,有两个正四面体的棱长也都等于.当这两个正四面体各有一个面与正四棱锥的侧面pad,侧面pbc完全重合时,得到一个新的多面体,该多面体是()

(a)五面体

(b)七面体

(c)九面体

(d)十一面体

2.正四面体的四个顶点都在一个球面上,且正四面体的高为4,则球的表面积为()

(a)9

(b)18

(c)36

(d)64

3.下列说法正确的是()

a.棱柱的侧面可以是三角形

b.正方体和长方体都是特殊的四棱柱

c.所有的几何体的表面都能展成平面图形

d.棱柱的各条棱都相等

3、高一数学下册期末知识点

函数的有关概念

1.函数的概念:设a、b是非空的数集,如果按照某个确定的对应关系f,使对于集合a中的任意一个数x,在集合b中都有确定的数f(x)和它对应,那么就称f:a→b为从集合a到集合b的一个函数.记作: y=f(x),x∈a.其中,x叫做自变量,x的取值范围a叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈a }叫做函数的值域.

三角函数公式

两角和公式

sin(a+b)=sinacosb+cosasinb sin(a-b)=sinacosb-sinbcosa

cos(a+b)=cosacosb-sinasinb cos(a-b)=cosacosb+sinasinb

tan(a+b)=(tana+tanb)/(1-tanatanb) tan(a-b)=(tana-tanb)/(1+tanatanb)

ctg(a+b)=(ctgactgb-1)/(ctgb+ctga) ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)

倍角公式

tan2a=2tana/(1-tan2a) ctg2a=(ctg2a-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(a/2)=√((1-cosa)/2) sin(a/2)=-√((1-cosa)/2)

cos(a/2)=√((1+cosa)/2) cos(a/2)=-√((1+cosa)/2)

tan(a/2)=√((1-cosa)/((1+cosa)) tan(a/2)=-√((1-cosa)/((1+cosa))

ctg(a/2)=√((1+cosa)/((1-cosa)) ctg(a/2)=-√((1+cosa)/((1-cosa))

和差化积

2sinacosb=sin(a+b)+sin(a-b) 2cosasinb=sin(a+b)-sin(a-b)

2cosacosb=cos(a+b)-sin(a-b) -2sinasinb=cos(a+b)-cos(a-b)

sina+sinb=2sin((a+b)/2)cos((a-b)/2 cosa+cosb=2cos((a+b)/2)sin((a-b)/2)

tana+tanb=sin(a+b)/cosacosb tana-tanb=sin(a-b)/cosacosb

ctga+ctgbsin(a+b)/sinasinb -ctga+ctgbsin(a+b)/sinasinb

某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sina=b/sinb=c/sinc=2r 注: 其中 r 表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosb 注:角b是边a和边c的夹角

弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根与系数的关系 x1+x2=-b/a x1*x2=c/a 注:韦达定理

判别式

b2-4ac=0 注:方程有两个相等的实根

b2-4ac>0 注:方程有两个不等的实根

b2-4ac

4、人教版高一数学下册知识点

【导语】高一新生要根据自己的条件,以及高中阶段学科知识交叉多、综合性强,以及考查的知识和思维触点广的特点,找寻一套行之有效的学习方法。今天为各位同学整理了《人教版高一数学下册知识点》,希望对您的学习有所帮助!

集合的有关概念

1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素

注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

②集合中的元素具有确定性(a?a和a?a,二者必居其一)、互异性(若a?a,b?a,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。

③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件

2)集合的表示方法:常用的有列举法、描述法和图文法

3)集合的分类:有限集,无限集,空集。

4)常用数集:n,z,q,r,n*

子集、交集、并集、补集、空集、全集等概念

1)子集:若对x∈a都有x∈b,则ab(或ab);

2)真子集:ab且存在x0∈b但x0a;记为ab(或,且)

3)交集:a∩b={x|x∈a且x∈b}

4)并集:a∪b={x|x∈a或x∈b}

5)补集:cua={x|xa但x∈u}

注意:a,若a≠?,则?a;

若且,则a=b(等集)

集合与元素

掌握有关的术语和符号,特别要注意以下的符号:(1)与、?的区别;(2)与的区别;(3)与的区别。

子集的几个等价关系

①a∩b=aab;②a∪b=bab;③abcuacub;

④a∩cub=空集cuab;⑤cua∪b=iab。

交、并集运算的性质

①a∩a=a,a∩?=?,a∩b=b∩a;②a∪a=a,a∪?=a,a∪b=b∪a;

③cu(a∪b)=cua∩cub,cu(a∩b)=cua∪cub;

有限子集的个数:

设集合a的元素个数是n,则a有2n个子集,2n-1个非空子集,2n-2个非空真子集。

练习题:

已知集合m={x|x=m+,m∈z},n={x|x=,n∈z},p={x|x=,p∈z},则m,n,p满足关系()

a)m=npb)mn=pc)mnpd)npm

分析一:从判断元素的共性与区别入手。

解答一:对于集合m:{x|x=,m∈z};对于集合n:{x|x=,n∈z}

对于集合p:{x|x=,p∈z},由于3(n-1)+1和3p+1都表示被3除余1的数,而6m+1表示被6除余1的数,所以mn=p,故选b。

空间几何体表面积体积公式:

1、圆柱体:表面积:2πrr+2πrh体积:πr2h(r为圆柱体上下底圆半径,h为圆柱体高)

2、圆锥体:表面积:πr2+πr[(h2+r2)的]体积:πr2h/3(r为圆锥体低圆半径,h为其高,

3、a-边长,s=6a2,v=a3

4、长方体a-长,b-宽,c-高s=2(ab+ac+bc)v=abc

5、棱柱s-h-高v=sh

6、棱锥s-h-高v=sh/3

7、s1和s2-上、下h-高v=h[s1+s2+(s1s2)^1/2]/3

8、s1-上底面积,s2-下底面积,s0-中h-高,v=h(s1+s2+4s0)/6

9、圆柱r-底半径,h-高,c—底面周长s底—底面积,s侧—,s表—表面积c=2πrs底=πr2,s侧=ch,s表=ch+2s底,v=s底h=πr2h

10、空心圆柱r-外圆半径,r-内圆半径h-高v=πh(r^2-r^2)

11、r-底半径h-高v=πr^2h/3

12、r-上底半径,r-下底半径,h-高v=πh(r2+rr+r2)/313、球r-半径d-直径v=4/3πr^3=πd^3/6

14、球缺h-球缺高,r-球半径,a-球缺底半径v=πh(3a2+h2)/6=πh2(3r-h)/3

15、球台r1和r2-球台上、下底半径h-高v=πh[3(r12+r22)+h2]/6

16、圆环体r-环体半径d-环体直径r-环体截面半径d-环体截面直径v=2π2rr2=π2dd2/4

17、桶状体d-桶腹直径d-桶底直径h-桶高v=πh(2d2+d2)/12,(母线是圆弧形,圆心是桶的中心)v=πh(2d2+dd+3d2/4)/15(母线是抛物线形)

练习题:

1.正四棱锥p—abcd的侧棱长和底面边长都等于,有两个正四面体的棱长也都等于.当这两个正四面体各有一个面与正四棱锥的侧面pad,侧面pbc完全重合时,得到一个新的多面体,该多面体是()

(a)五面体

(b)七面体

(c)九面体

(d)十一面体

2.正四面体的四个顶点都在一个球面上,且正四面体的高为4,则球的表面积为()

(a)9

(b)18

(c)36

(d)64

3.下列说法正确的是()

a.棱柱的侧面可以是三角形

b.正方体和长方体都是特殊的四棱柱

c.所有的几何体的表面都能展成平面图形

d.棱柱的各条棱都相等

5、猜你喜欢: